
00

NNAVAL POSTGRADUATE SCHOOL
N Monterey, California

'<

TI-IESIS
A CONCEPTUAL LEVEL DESIGN OF A DESIGN DATABASE FOR

THE COMPUTER-AIDED PROTOTYPING SYSTEM

by

Bryant Steven Douglas

March 1989

Thesis Advisor: Valdis Berzins

Approved for public release; distribution is unlimited

DTIC
f S ELFrT Pi

MAYi7 1989 i

89 5 17 044

I nca aI
SECURITY CLASSIC:C4 TO'J r', ", :'C

REPORT DOCUMENTATION PAGE
ia REPORT SECURJTY CLA5S,),LA'OfN 1b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY C ASSi;CATON AL HC)R,TY 3 DISTRIBUTION, AVAILABILITY OF REPORTApproved for public release;

2b DECLASSiFICATON DOV.NGkADrG SCHEDULE Distribution is unlimited

4 PERFORMING ORGA7.T7i1ry REPORT NJMBER(S; 5 MONITORING ORGANIZATION REPORT NUMBER(S

6a NAME OF PERFORriNG ORGANIZATION 6D OFFICE SYMBO_ 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

1 52
6c ADDRESS (City, State. and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Monterey, CA Monterey, CA
93943-5000 93943-5000

Ba NAME 01 FUNJDING, SPONSORING Bo OFFICE SYMBOL 9 PROCUFJEFENT INSTRUMENT IDENTIFICATION NMPER
ORGANIZATiO% (If applicable)

8c ADDRESS (City. State. an ZIP Code) 70 SOURCE Oc FUNDING N'JBE PS

PROGRAM PROJECT TASK .AOPv uNIT
ELEMENT NO NO NO 'kCCES3ION NO

I I TIl LE (incude Securr) Classfcation)
A CONCEPTUAL LEVEL DESIGN OF A DESIGN DATABASE FOR THE COMPUTER-AIDED PROTOTYPING SYSTEM

Douglas, Bryant S.

13a TYPE O; REPORT 1
3r-I ME COVEPED 14 DATE O; REPORT (Year. Month, Day) 1S PAGE COjNT

Master's Thesis o I 1989 March 98

16 SUPPLERPE^i~TAm NOAU
" ()" The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the Department of Defense or the U.S. Goverment

(Of-' rOi)S 18 SuBECT TERMS (Continue on reverse it necessary and identifty oy block number)
- .i _-Gp.) bject-oriented design; Object-oriented database;

I ;Engineering database, Computer Aided Software Engineering
I (CASE); Rapid 4?rototyping, Design database, r

19 ABSTRACT (Continue on reverse if necessary and ientify by block number)
Vast amounts of evolving data are created in the design of hard real-time software systems.
This data must be managed so that it can be stored and retrieved according to the needs of
design engineers. In the Computer-Aided Prototyping System (CAPS), a Design Database (DDB)
must manage the storage and retrieval of the entire Prototype System Description Language
(PSDL) program. This thesis presents a conceptual design and initial implementation of a
Design Database (DDB) for the Computer-Aided Prototyping System (CAPS).

11, DSIRIB , lo 'AVA,,LAb IT, n' ABSTR-C' 2 ABSTRAC' SECURITY CLASSIFCATION
'/ JNCcASS Et iN." 'r., [SAr . AS ?D - DTi(USERS Unclassified

- ,. (U- 2 , N ILV cA 2h TELEPMONE (In(luoe Area Code) :.,c OFFICE SYMBU
Valdis Berzins (408) 646-2461 52Be
DD FORM 1473,, -,A 83 4Le k-, 're, De 1 %G U1111 PXhavs'pC SE(.111Y CLASS EKCATON (IOr THIS PAGE

A . ' 'i edtion$ a'e orIsoIe'e, P ,-,.~

i

Approved for public release; distribution is unlimited

A CONCEPTUAL LEVEL DESIGN OF A DESIGN DATABASE FOR THE
COMPUTER-AIDED PROTOIYPING SYSTEM

by

Bryant S. Douglas
Lieutenant, United States Navy

B.S.B.A., University of Missouri - Columbia, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author: - QBJ ant S. Doug!

Approved by:
Valdis'-I, Thesis Advisor

Tarek Abdel-Hamid, ond Reader

Davi .Ntp e

Department of A in tive Sciences

Kneale L
Dean of Information ences

IiI

ABSTRACT

Vast amounts of evolving data are created in the design of hard

real-time software systems. This data must be managed so that it can

be stored and retrieved according to the needs of design engineers. In

the Computer - Aided Prototyping System (CAPS), a Design Database

(DDB) must manage the storage and retrieval of the enthe Prototype

System Description Language (PSDL) program. This thesis presents a

conceptual design and initial implementation of a Design Database

(DDB) for the Computer - Aided Prototyping System (CAPS).

j .

Ataesston For

?NTIS "FA&I
DTIC TAf 0l
Unaa ou.Ged 0
Just if icatio

By

Distribution/

Av~aiabilltY Codeu

Avail and/or

Dist spaela

4m

*0

THESIS DISCLAIMER

Ada is a registered trademark of the United States Government,

Ada Joint Program Office.

lv

• " m L

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

1. Hard Real-Time and Embedded Software Systems 2

2. The Computer-Aided Prototyping System 4

3. The Design Database 4

4. The Object-Oriented Approach 6

B. OBJECTIVES 6

C. ORGANIZATION 6

H. ENGINEERING DATABASES AND THE OBJECT-ORIENTED
APPROACH 7

A. ENGINEERING DATABASES 7

B. THE OBJECT-ORIENTED APPROACH 8

C. VBASE 9

M. CONCEPTUAL DESIGN FOR THE DESIGN DATABASE 12

A. REQUIREMENTS FOR THE DESIGN DATABASE IN
RAPID PROTOTYPING 12

1. Environment Model 13

2. High Level Goals 17

3. Constraints 18

B. CONCEPTUAL MODEL OF THE DESIGN DATABASE ... 19

C. FUNCTIONAL SPECIFICATIONS FOR THE
DESIGN DATABASE 22

D. ARCHITECTURAL DESIGN 27

V

IV. FEASIBILITY FOR THE DESIGN DATABASE
USING VBASE 31

A. EXAMPLES OF COMPONENTS IN THE
DESIGN DATABASE 31

1. Type Definition 31

2. COP Definition 36

3. Application Programs 40

4. Interface Requirements of the DDB and User Interface 42

5. Version Control 46

V. CONCLUSIONS AND RECOMMENDATIONS 49

A. SUMMARY AND CONCLUSIONS 49

B. RECOMMENDATIONS FOR FURTHER RESEARCH 50

APPENDIX A. REUSABLE COMPONENTS LIBRARY 51

APPENDIX B. MODEL LANGUAGE GRAMMAR 54

APPENDIX C. TDL DEFINITION EXAMPLES 55

APPENDIX D. COP OPERATIONS CODE 58

APPENDIX E. APPLICATION PROGRAMS 62

LIST OF REFERENCES 84

INITIAL DISTRIBUTION LIST 86

vi

LIST OF FIGURES

Figure 1. Computer-Aided Prototyping System................. 5

Figure 2. Vbase Overview................................ 11

Figure 3. Conceptual DDB Structure....................... 20

Figure 4. Atomidc Node................................. 21

Figure 5. Composite Node............................... 21

Figure 6. Version Set.................................. 46

Figure 7. Audit Trail Properties........................... 48

vii

ACKNOWLEDGMENT

This thesis is dedicated in loving memory to my father, W.B.

Douglas. I would not be here today were it not for his love and

guidance. I would like to thank my mother, Frances Douglas, for her

encouragement and words of kindness throughout my life.

I would like to thank Professor Valdis Berzins for taking on a

thesis student who did not possess the usual background required for

this type of thesis. I would like thank Professor Luqi for her

encouragement when I was discouraged and frustrated.

Last but not certainly not least, I would like to thank my loving

wife and "real" thesis advisor, Carla, for her persistence and her love

throughout this trying time.

viii

I. INTRODUCTION

A. BACKGROUND

The development of hard real-time and embedded software systems

is an extremely complex and expensive process. A software

development methodology which will reduce the development costs,

increase the productivity rates, and reduce the maintenance costs of

these systems is long overdue. The prevailing ideas of today are

computer-aided rapid prototyping, software reusability, and the use of

an executable high-level specification language. The goal of the

Computer-Aided Prototyping System (CAPS) is to integrate all of these

ideas and more, into one software development tool. [Ref. 1:p. 661

In 1985, the United States Department of Defense (DOD) spent

roughly $11 billion dollars in software costs and is estimated to spend

$36 billion in 1995 [Ref. 2:p. 431. The majority of these costs are

involved in the development and maintenance of embedded systems

[Ref. 3:p. 131. These costs certainly inspire one to think of software

development in terms of a crisis. As stated by Booch:

The symptoms of the software crisis appear in the form of software
that is nonresponsive to user needs, unreliable, excessively
expensive, untimely, inflexible, difficult to maintain, and not
reusable [Ref. 3:p. 2J.

Thus, a software development tool which can provide a 20 percent

improvement in software productivity will save the DOD and the

American taxpayer billions of dollars.

1. Hard Real-Time and Embedded Software Systems

The development of hard real-time and embedded software

systems creates additional problems in the software development

process. As pointed out by Booch:

they all generally share a set of common characteristics, namely:

* Large. Thousands/millions of lines of code.
- Long-lived. 10 to 15 years.
" Continuous Change. Due to changing requirements.
" Physical constraints. In target hardware address space/speed.
" High reliability. Also fault-tolerant. [Ref. 3:p. 131

Each of these characteristics makes embedded systems difficult to

develop. For this reason, the DOD mandated the use of Ada in all

embedded computer software programs, whether new programs or

upgrades to existing ones (Ref. 4:p. 33]. The effects of this decision on

software development costs may not be felt immediately , but the long

term savings of a universal programming language for embedded

systems will be realized.

A hard real-time system is defined as a software or firmware

controlled system that performs all its process functions within critical

specified time constraints [Ref. 5:p. 31.

2

An embedded system, on the other hand, is one that is part of a larger

system [Ref. 3:p. 3]. However, embedded systems usually require hard

real-time constraints. A real-time system is more difficult to develop

than a non-real-time system. As discussed in Ref. 5, some of the

difficulties include:

" Handling of stringent time requirements and performance
specifications.

* Interfacing with a real-time clock.

" Control of hardware devices such as communication lines,
terminals, and resources.

" Processing of messages that arrive at irregular intervals, with
fluctuating input rates, and with different priorities.

" Control of fault conditions with facilities for various degrees of
recovery.

" Handling of queues and buffers for storage of messages and data
items.

* Modeling of concurrent conditions into a proper set of concurrent

processes.

* Allocation and control of concurrent processes to processors.

" Handling of communication and synchronization between
concurrent processes.

" Protection of data shared between concurrent processes.

" Scheduling and dispatching (including priority handling) of
concurrent processes.

3

Due to these demanding requirements, the development of hard

real-time and embedded systems is an expensive and time consuming

process. A development methodology which can reduce the

development cost and time of this process will be of great benefit to

the DOD.

2. The Computer-Aided Prototyping System

The Computer-Aided Prototyping System is one attempt to

improve the productivity and reliability of software through the use of

computer-aided rapid prototyping via specification and reusable

components [Ref. l:p. 66]. This approach to rapid prototyping uses a

specification language called Prototype System Development Language

(PSDL) integrated with a set of software tools [Ref. 1:p. 661. Figure 1

gives a graphical representation of CAPS [Ref. 6:p. 81. The major

components of CAPS are a user interface consisting of a syntax

directed editor and graphical editor, a design management system

consisting of a software base management system and design

database, and an execution support system consisting of a translator,

dynamic scheduler, and debugger. For further explanations of the

above systems see Refs. 6, 7, 8, 9, 10, 11, and 12.

3. The Design Database

Vast amounts of evolving data are created in the design of hard

real-time software systems. Conventional database management

4

systems (DBMS) were designed for business applications and as such

are insufficient to handle the needs of computer-aided design (CAD)

applications. The data must be managed so that it can be stored and

retrieved according to the needs of design engineers. In CAPS, the

Design Database (DDB) must manage the storage and retrieval of the

Prototype System Description Language (PSDL) program. The DDB

must be a specialized DBMS which will store PSDL specifications in a

hierarchical format.

SOFTWARE BASE
I_ DESIGN

SOFTWARE BASE DATABASE
MANAGEMENT SYSTEM

GRAPHICS EDITOR SYNTAX U
DIRECTED S
EDITOR E

R

USER INTERFACE I

TRANSLATOR SCHEDULER

L I -DEBUGGER

EXECUTION SUPPORT

Figure 1. Computer-Aided Prototyping System

5

MMEMENOMM

4. The Object-Oriented Approach

As stated by Ketabchi:

There is an increasing interest in developing object-oriented
database management systems to manage the large amount of data
involved in computer-aided design (CAD) applications [Ref. 13:p.441.

In the past three years, several object-oriented database management

systems have emerged. The impact of these systems on the software

development process are Just beginning to be felt. The object-oriented

approach represents a true paradigm shift [Ref. 14:p. 3861.

B. OBJECTIVES

The objective of this thesis is the development of a conceptual level

design and initial implementation for the Design Database of the

Computer-Aided Prototyping System. This design will be the basis for

further research leading to full implementation of the Design Database.

C. ORGANIZATION

Chapter II contains a survey of recent work in the area of software

engineering databases with an emphasis on the object-oriented

approach. An introduction to Vbase, a state of the art object-oriented

DBMS will conclude Chapter II. Chapter III contains the actual design

of the Design Database. Chapter IV shows the feasibility of the Design

Database using Vbase. Conclusions and recommendations will be

presented in Chapter V.

6

H. ENGINEERING DATABASES AND THE OBJECT-ORIENTED

APPROACH

A. ENGINEERING DATABASES

There have been various attempts at achieving a solution to the

management of design databases. According to Berzins and Ketabchi:

Four different approaches to the solution exist:

(1) Developing a new DBMS, called a design DBMS (DDBMS),
equipped with facilities required in design applications.

(2) Enhancing the current DBMSs by adding new capabilities.

(3) Building a layer of software on top of current DBMSs to
compensate for their deficiencies.

(4) Using a special-purpose fie manager that views the DBMS as

an application. [Ref. 15:p. 941

Sherpa Data Management System provides an example of the first

approach [Ref. 16:p. 551. Starburst, Almaden, and Postgres provide

examples of the second approach [Ref 16:p. 571. The third approach is

the most popular approach in the industry, because it allows the use

of off-the-shelf DBMS and can be made rapidly operational

[Ref. 15:p. 94]. With the invention of object-oriented technology, the

first approach will become the most popular because it also allows the

use of off-the-shelf DBMS but with enhanced capabilities.

7

B. THE OBJECT-ORIENTED APPROACH

An object-oriented database management system (OODBMS) must

provide persistence, concurrency, recovery, transaction management,

authorization, and security [Ref. 16:p. 601. An OODBMS is an

object-oriented system and as such it must also provide the following

capabilities:

" Objects

" Active data

" Abstraction

* Extensibility [Ref. 1 6 :p. 61]

An OODBMS should provide application-oriented capabilities such

as:

* Version and configuration control for CAD applications.

" Dynamic creation of classes.

" Recursive classes, multiple inheritance, and extensive tool
interface capabilities.

• Support for multimedia objects, distributed environments, and
graphics. [Ref. 16 :p. 62]

An object-oriented DBMS is one that supports persistency, values, an

extensible set of data structures, an extensible set of operations, and

abstractions [Ref. 16:p. 76].

8

C. VBASE

The Vbase object-oriented database management system is a

product of Ontologic, Inc. As Ontologic puts it:

Vbase is an object database system, providing an integrated
software development platform which combines the latest advances
in compiler design and database management techniques
[Ref. 17:p. 11.

The Vbase Integrated Object System is a database and
language platform for rapidly and inexpensively building
sophisticated commercial and engineering applications
[Ref. 17:p. 51.

The Vbase system environment consists of the following

components:

* Vbase Database. Persistent objects are stored in the Vbase
Database.

" Object Language. Type Definition Language (TDL) is the Vbase
data definition language. It is used to define object types in the
database. "C" Object Processor (COP) is the Vbase data
manipulation language. It is an object extension of Kemighan and
Ritchie standard C. It is used to implement the operations of the
object types defined using TDL.

" System Type Library. The system type library contains many
object types which provide powerful building blocks for the
application developer.

* Integrated Tool Set (ITS). A single tool combining the functionality
of a source browser, database browser, and a source debugger.

* Object SQL. The Vbase implementation of the SQL standard query
language. [Ref. 17:p. 61

Figure 2 presents a graphical representation of Vbase.

9

The steps involved in a typical Vbase database design are listed

below:

" Identify the objects.

" Identify their properties as much as possible.

* Identify the frequent operations performed on the objects.

* Define the objects using TDL.

* Compile and debug the TDL definition of the objects.

" Develop COP routines to implement the operations.

" Compile and debug the COP programs.

* Develop C or COP user applications. [Ref. 16:p. 81

Vbase is a powerful tool for implementing and maintaining large

software applications. Its integration of compiler technology with

database functionality in a strongly-typed system provides both

sophisticated modeling and efficient language and database

performance.

10

DATA METHODS APPLICATIONS
OBJECTS SOURCE SOURCE

(TDL) (COP) (COP)

COMPILE
TIME _

TDL COP COP

COMPILER COMPILER COMPILER

OPERATION

OBJECT MANAGER

RUN DAAAPPLICATION
TIME VBASE DATABASE DATAAPLCTO
TIME EXCHANGE PROGRAMS

OPERATING SYSTEM
(UNIX)

Figure 2. Vbase Overview

11

III. CONCEPTUAL DESIGN FOR THE DESIGN DATABASE

A. REQUIREMENTS FOR THE DESIGN DATABASE IN RAPID

PROTOTYPING

The purpose of the Design Database (DDB) in the Computer-Aided

Prototyping System (CAPS) is to manage the project database so that it

can be stored and retrieved according to the needs of design engineers.

The requirements analysis was conducted using the specification

language SPEC [Ref. 181. SPEC is a language for giving black-box

specifications in the early stages of software design [Ref. 18:p. 11.

As stated by Berzins:

The goal of requirements analysis is to establish the purpose of the
proposed software system and to establish constraints and
boundary conditions on the rest of the software development
process [Ref. 19:p. 1-21.

The result of the requirements analysis should include the
following:

" A model of the system's environment.

" A description of the goals of the system and the functions it must
perform.

" Performance constraints on the system.

" Constraints on the implementation of the system.

" Resource constraints for the development project.

" A specification of the external interfaces of the system.
[Ref. 19:p. 2-1]

12

1. Environment Model

As stated by Berzins:

The environment model must supply the concepts needed for
describing the world in which the proposed system will operate.
These concepts consist of the types of objects in that world, the
attributes of those objects, the relations between those objects, and
the laws governing those objects and relations. [Ref. 19:p. 2-21

The environment model for the Design Database is shown

below. The model was formulated in terms of reusable model

components. A reusable component is a definition of a general type or

relation [Ref. 19:p. 2-81. The reusable components used are shown in

Appendix A [Ref. 19:p. 2-9]. The model is expressed in a simple

notation that is explained as it appears. Explanatory comments are

preceded by a "--" symbol. A grammar for the notation is given in

Appendix B [Ref. 19:p. 2-211.

type CAPS

a_kindof(software.system,CAPS)

-- The Computer-Aided Prototyping System (CAPS) is a
-- software-system.

type psdl

a_kindof(psdl,language)

-- PSDL is a language for expressing specifications.

createdby(every psdl,a userinterface)

-- All specifications are created in the user interface.

13

type design-database

a_kindof(design_databasesoftwareTsystem)

-- The designdatabase is going to be a software_system.

partof(a design-database,every CAPS)

-- The design_database is part of CAPS

unique(design-database)

-- There will be only one instance of the designdatabase for each
-- project.

proposed(a design-database)

-- I am going to build a designdatabase.

controls(a design-database,node)

-- The design_database controls the design data by
-- managing collections of data called nodes.

type design-engineer

a_kindof(design.englneer,user)

-- The design engineer is a user of the system.

uses(every designengineer,a userJnterface)

-- The model includes only the design engineers that will interact
-- with the designdatabase via the usernterface.

14

type userinterface

a_kindofluser..interface, software-system)

-- The userinterface is a software-system.

partof(a userinterface,every CAPS)

-- The userinterface is a part of CAPS.

createdby(a userinterfaceevery node)

-- The userinterface is the only source for data.

type data

-- any kind of data that is used by a software system

uses(a software.system, every data)

relation reads(softwaresystem, data)

-- true if the data Is an input for the software system

reads(any software-system, any data) => uses (softwaresystemdata)

relation writes(software-system, data)

-- true if the data is an output for the software system

writes(any softwaresystem, any data) => uses (software-system,data)

relation updates (softwaresystem, data)

-- true if the data is both an input and an output for the system

updates(any softwaresystem, any data)

<=> reads(softwaresystem, data) & writes(software-system, data)

15

type node

a_kindof(nodedata)

-- A node is the basic structure for maintaining the design database.

needed for(node,every specification)

-- Every specification created in the system will be stored in a node.

created-by(every node,a user-interface)

-- All nodes are created via the user interface.

-- The attributes of a node are listed below.

specification(node):psdl

implementation(node):psdl

controlconstraints(node) :psdl

graphlcjrecord (node) :graphicjrecord

-- A node consists of a specification, a graphic record,
-- an implementation, and control constraints.

text(node):psdl-file

type graphic-record

a-klndof(graphic_record,data)

part-of(node ,graphic record)

-- A graphic record is one input into in a node.

created-by(a userinterface,every graphic record)

16

type implementation

a_kind_of(implementation,data)

partof(node, implementation)

-- An implementation is one input into a node.

createdby(a userinterface,every implementation)

type controlconstraints

a_kindof(control-constraints,data)

partof(node,control_constraints)

-- Control constraints are part of the data in a node.

createdby(a userinterface,every control-constraints)

type psdl_flle

a_kind_of~psdLfle, data)

-- A file containing the PSDL program will be the ultimate output.

2. High Level Goals

The requirements for the DDB are formalized by writing a

description of the goals of the system and the functions It must

perform in terms of the model. A major part of the requirements

analysis is turning the informal problem statement into a precise,

testable, and feasible set of requirements. The high level goals for the

Design Database are shown below.

17

GI: The purpose of the system is to store the levels of a PSDL

design in a hierarchical format.

G1.1: The system must allow design engineers to retrieve the

levels for review or editing.

G1.2: The system must be able to create and insert new levels

into the structure.

G1.2.1: The system must interface with the user interface for

inputs to the database.

G2: The system must be able to generate the entire PSDL

program.

3. Constraints

There are three types of constraints for a software system:

implementation, performance, and resource. The constraints for the

Design Database are given below.

Implementation constraints:

Cl: The design database must be implemented with a DBMS which is

compatible with the Sun workstation and Unix operating system.

Performance constraints:

C2: The responses of the design database must be fast enough not to

irritate the design engineers using the system.

18

Resource constraints:

C3: The Design Database will be developed by thesis students at the

Naval Postgraduate School.

B. CONCEPTUAL MODEL OF THE DESIGN DATABASE

The DDB is a hierarchical storage structure for the PSDL program.

This structure is a tree consisting of atomic and composite nodes.

Figure 3 illustrates this structure. Both types of nodes contain a node

name, a PSDL specification, an implementation, and parent <-> child

relationship information. An atomic node's implementation is ADA

code. A composite node's implementation is graph. A graphic

implementation may contain timing constraints in the form of control

constraints. Each level of the tree is created by the decomposition of

the parent node. The decomposition process is complete when all leaf

nodes are atomic. Figures 4 and 5 present graphical representations

of atomic and composite nodes.

19

ROOT

(COMPOSITE)

(COMP) (COMP) (COMP)

NODE 1.1 NODE 1.2 NODE 2.1 NODE 2.2 NODE 3.1 NODE 3.2
(ATOMIC) (ATOMIC) (COMP) (ATOMIC) (COMP) (ATOMIC)

NODE 2.1.*1 NODE 2.1.2 NODE 3.1.1 NODE 3.1.2
(ATOMIC) (ATOMIC) (ATOMIC) (ATOMIC)

Figure 3. Conceptual DDB Structure

20

NAME

SPECIFICATION

IMPLEMENTATION
(ADA CODE)

PARENT <-> CHILD INFO

Figure 4. Atomic Node

NAME

SPECIFICATION

IMPLEMENTATION
(GRAPH)

CONTROL CONSTRAINTS

GRAPHIC RECORD

PARENT <-> CHILD INFO

Figure 5. Composite Node

21

C. FUNCTIONAL SPECIFICATIONS FOR THE DESIGN DATABASE

As described by Berzins:

A functional specification is a precise black-box model of the
proposed software system. The result of the functional specification
phase is an event model of the system to be built, expressed in a
Spec language. In the event model, computations are described in
terms of modules, events, and messages. A module is a black box
that interacts with other modules only by sending and receiving
messages. An event occurs when a message is received by a
module at a particular instant of time. A message is a data packet
that is sent from one module to another. [Ref. 18:p. 21

A further description of the Spec language by Berzins states:

The Spec language provides a means for specifying the behavior of
three different types of modules: functions, state machines, and
abstract data types. Function modules are immutable, and
calculate functions on data types. A machine is a module with an
internal state. An abstract data type consists of a set of instances
and a set of primitive operations involving instances. [Ref. 18:p. 31

The functional specifications begin with a skeleton of a

specification with places for each of the missing details to be filled in

later. The initial specifications are shown below.

MACHINE designdatabase

-- The design database is a machine because it is time sensitive.

INHERIT userinterfaceinterface

-- The system will interface with the user interface portion of the
-- CAPS system therefore, inheritance relations exist.

STATE

INVARIANT true

INITIALLY true

END

22

MACHINE userinterface

-- The user interface is an external system that sends messages to
-- the design database.

STATE

INVARIANT true

INITIALLY true

END

The next step Is to make a list of the messages in each interface

by consulting the requirements. The user interface is the only

interface for the design database. The following messages are

produced corresponding to the goals of the system:

userinterfaceinterface

create_root_node G1, G1.2

createchildnode G1, G1.2

delete_node G1, G1.2

lookup-node G1.1

getparent G1.1

getchild G1.1

traversetree G2

These messages have covered all of the goals in the goal tree with the

exception of G1.2. 1. This goal is an assumption about the

environment.

23

The result of the userinterface interface messages are shown below.

MACHINE userinterfaceinterface

-- The skeleton specification begins by identifying the interface
-- messages.

STATE (tree:mapinode,set(node})

INVARIANT exlsting-nodes(node)

INITIALLY node = 1)

MESSAGE lookup(nodename) -- G 1.1

-- Find the node requested.

WHEN ? -- node found

REPLY node -- return node contents

OTHERWISE REPLY EXCEPTION node does not exist

MESSAGE get.parent(node) -- GI 1

-- Find the parent of the node requested.

WHEN ? -- parent found

REPLY node -- return parent node

OTHERWISE REPLY EXCEPTION node is the root

24

MESSAGE get-child(node) -- G 1.1

-- Find the child or children of the node requested.

REPLY set(node) -- return child node(s)

MESSAGE createrootnode(node) -- G 1, 01.2

-- Create a new node and insert into the top of the hierarchy

WHEN? -- node created

REPLY done

TRANSITION? -- add root

MESSAGE createchild-node(node) -- GI.1, G1.2

-- Create a new node and insert into the hierarchy correctly

REPLY done

TRANSITION? -- add node

MESSAGE deletenode(node) -- G1.1, G1.2

-- Find the node and delete it and all children from the structure.

WHEN? -- node found

REPLY done

TRANSITION? -- remove node and children

OTHERWISE REPLY EXCEPTION node does not exist

25

MESSAGE traverse tree(node) -- G2

-- Find the requested root node and display all children if they all

-- consist of PSDL specifications.

WHEN? -- node found

REPLY setinode}

OTHERWISE REPLY EXCEPTION psdl program does not exist

END

The goal of functional specification is to construct a model of the

proposed system as it is visible to the users [Ref. 19:p. 1-31. The

concepts that the users will be expected to know and the details of the

interfaces are defined. The functional specification does not include

any information on how the system behavior is to be realized. The

result is a set of definitions for the system concepts and interfaces.

The major functions of the DDB are:

" Store the levels of a PSDL program in a hierarchical format by
specification.

" Retrieve the levels of a PSDL program in a hierarchical format by
specification for review or editing.

* Create and insert new levels of a PSDL program in a hierarchical
format by specification.

* Generate the entire PSDL program.

26

A brief example to illustrate the expected patterns of use of the

methods provided by the DDB follows. To construct a prototype, the

PSDL specification of the root operator is entered. At this point, the

DDB would create a root node. Assuming the root node is composite,

the node would be decomposed into children operators. The DDB

would create child nodes for each decomposition. The decomposition

process would continue until all leaf nodes are atomic. This process

will be time consuming and the prototype will be complex. For this

reason, the functions of retrieving nodes, parent-child relationships,

and deleting nodes will be required. The tree will be traversed and the

entire PSDL program produced once all leaf nodes are atomic.

D. ARCHITECTURAL DESIGN

The next step in the design process is to develop an architectural

design.

An architectural design is a model of the proposed system
capturing the aspects of its behavior and structure relevant to the
development team. The behavior of a system consists of its
interactions with other systems, while the structure of a system
consists of its component parts and their interconnections.
[Ref. 19:p. 4-531

The functional specification is a subset of the architectural design.

The functional specification is the least detailed view of the system.

27

'The goal of the architectural design is to break up the proposed

system into a set of small modules." [Ref. 19:p. 4-541 A module is

defined as a self contained unit of code.

A module is both a self-contained abstraction and a unit of work.
Modules have several different views: black-box specification, parts
lists, glass-box specifications, and programs. [Ref. 19:p. 4-541

Black-box specifications are expressed in terms of the event model at

the architectural design and functional specification stage. The parts

lists contains the set of lower level modules used directly in the

implementation. Glass-box specifications are represented by pseudo-

code. Programs are produced in the implementation phase.

[Ref. 19:p. 4-54] The black-box specifications will be shown below.

The parts lists and pseudo-code are not contained. Programs will be

discussed in Chapter IV.

Black-box specifications

Type Node

Model (specification implementation graphicrecord
control-constraints: string)

-- The following messages are used to replace the current value of
-- a node's property with a new value.

MESSAGE add-graphicrecord(node)

TRANSITION? -- update node graphic record info

28

MESSAGE addimplementation(node)

TRANSITION? -- update node implementation info

MESSAGE addspecification(node)

TRANSITION? -- update specification info

MESSAGE addcontrolconstraints(node)

TRANSITION? -- update control constraints

END

The result is a lower level set of definitions for the system concepts

and interfaces. These messages reveal operations on the abstract data

type node. The lower level messages in the userinterface interface

are:

add-graphic-record

add-implementation

addspecification

addscontrol-constraints

The addition of these messages creates an additional function

requirement:

* Create and maintain version control.

29

A new node could be created when a nodes' properties are significantly

changed by these low level messages. The ability ro define a

significant change will be required. The current implementation of the

DDB does not address this function. Chapter IV does contain a

discussion of version control.

As evidenced by the functions required of the DDB, a conventional

DBMS will not suffice. Therefore, an object-oriented DBMS will be

used to design and implement the DDB. The object-oriented DBMS

that will be used is Vbase by Ontologic Incorporation.

30

IV. FEASIBILITY FOR THE DESIGN DATABASE USING VBASE

A. EXAMPLES OF COMPONENTS IN THE DESIGN DATABASE

1. Type Definition

As stated earlier, the first steps in a Vbase design are to

identify the objects, their properties, and the frequent operations

performed on the objects. The next step is to define the objects in

TDL. The only object in the Design Database is a Node. The

properties of a node were defined earlier as well. The frequent

operations are those necessary to assist in the accomplishment of the

required functions of the design database. The TDL code below

illustrates the definition of a Node.

define Type Node

supertypes = (Entity)

properties =

name: String;
specification: String;
implementation: optional String;
controlconstraints: optional String;
graphicrecord: optional String;
subNodes: distributed Set[Node] inverse $Node$isChildOf;
isChildOf: optional Node inverse $Node$subNodes;
I

The main points to notice about the above definition are the

supertypes, optional, and inverse keywords. The supertypes

declaration is used to show the parent class of a type. This is used

31

for inheritance purposes. The supertype Entity is the root of all types

in the Vbase system type library [Ref. 17:p. IX-6]. Entity specifies

basic behavior for all object types in the system.

The keyword optional specifies that a property need not

necessarily have a value. This indicates that a PSDL specification may

or may not have an implementation, control constraints, or graphic

record. The implementation property is optional due to the process

through which PSDL specifications are created. The control

constraints and graphic record are true optional properties in that they

may or may not ever exist depending on whether implementation is

graphic or ADA.

The inverse property sets up a system-maintained relationship

between the property defined and its specified inverse. This property

is used to maintain the parent-child relationship between Nodes. The

inverse property also illustrates the "$" notation. The "$" notation is

used to provide a mechanism for referring to names relative to their

scope. The symbol "$" acts as a pathname separator.

The next step is to define the frequent operations on the object.

The clause "operations = I ...};" defines the set of operations that type

Node will implement. The operations for a Node are buildDisplay,

listsubNodes, lstsubNodeslntemal, and a refinement of the delete

operation. BuildDisplay is used for output of a Node contents.

32

ListsubNodes and listsubNodeslntemal are used to retrieve the

children of a particular Node. The refines delete operation means the

current definition is refining an operation already defined in the

supertype. The actual refinement is achieved in the COP method

which implements the operation and will be described later. The

operations for a Node are defined as:

operations = {

buildDisplay (n:Node,)
returns(Node)
method (NodeBuildDisplay);

listSubnodes (n:Node)
returns (Set[Node])
method (NodeListSubNodes):

listSubnodesInternal (n:Node, s:Set [Node])
returns (Set[Node]
method (NodeListSubNodesInt);

refines delete (n:Node)
raises (CannotDelete)
triggers (NodeDeleteTrigger);

};

The definition of a Node includes two procedure definitions:

define Procedure Create ... end Create;

and

define Procedure Lookup ... end Lookup;

Procedures differ from typed operations in that they are not tied to a

type. For example, the operation $Node$bufldDisplay can only be

33

called on instances of type Node, while the procedure $Node$Lookup

can be called with any arguments which satisfy the argument type

specification of the procedure. The procedure Create has an argument

specification of the form:

define Procedure Create
(t:Type,

keywords
name: String,

specification: String,
optional implementation: String,
optional controlconstraints: String,
optional graphicrecord: String,
optional isChildOf: Node,
optional where: Entity,
optional hownear: Clustering)

returns (Node)
raises (NodeAlreadyExists)
triggers (NodeCreateTrigger)
supertypes = ($Entity$Create);
end Create;

This specification gives more examples of the power of Vbase.

Specifically, the keywords "keywords", "raises", "triggers", and

"hownear". The keyword "keywords" specifies that the remaining

arguments are passed by keywords, rather than by position in the

argument list.

The statement "raises (NodeAlreadyExlsts)" specifies that the

procedure may raise the exception NodeAlreadyExlsts. This exception

is to alert the caller that the Node already exists, rather than creating

a new copy of the Node.

34

The Create procedure also has a triggers clause, "triggers =

(NodeCreateTrigger)". The Vbase system automatically generates a

Create Procedure for every type defined. An explicit definition is

required to specify a trigger to the system-defined Create. A trigger is

a method associated with the invocation of a procedure or operation.

Whenever the Create procedure is invoked, the trigger,

NodeCreateTrigger, will be executed first. The trigger checks whether a

Node already exists before creating a new one. An operation can have

more than one trigger associated with it. The triggers are invoked in

the order they are listed, and the last trigger must invoke the base

method. The base method is the method which is specified as

implementing the operation or procedure. [Ref. 17:p. 10- Ill

The optional keywords where and hownear can be used in the

Create operation to optimize disk storage of the object created to

improve database performance. The type Clustering is an enumerated

type with three instances: $area, $segment, and $chunk. Each is a

unit of storage on the disk. Segment is the atomic unit of transfer

from disk to the main memory cache. To specify that an object

created is to be stored in the same segment as some other object, the

value of the hownear argument is "$segment" and the value of the

where argument is the other object. $Area and $chunk are not

currently supported. [Ref. 17:p. IX-41]

35

The second procedure defined is called Lookup. This procedure

is used to look up a given Node, identified by its Node name, in

NodeCatalog which is a global Node catalog. The specification for

procedure Lookup is as follows:

define Procedure Lookup (s:String)
returns (Node)
raises (NodeNotlnCatalog)
method (NodeLookup)
supertypes = (Entity);
end Lookup;

There is one additional TDL definition in the DDB,

NodesExceptions.tdl. NodesExceptions contains the definitions of the

exceptions used in the application. The complete TDL definitions are

listed in Appendix C.

2. COP Definition

The next step in the design of a Vbase application is to

implement the frequent operations using COP. COP is an object-based

superset of the language C. This can be either an advantage or a

disadvantage of Vbase, depending on the designers knowledge of the C

language. One method implemented for the object Node was

"NodebufldDisplay". This operation is used to output the contents of a

Node to a file. The COP code below implements the method:

36

#include <stdio.h> P* include standard C routines
#include <string.h>
#define MAXLINE 81 /* maximum line length is 81 characters *
#define MAXSTRING 4000 /* maximum string length is 4000
char opname[MAXLINEI; P* declaration of local variables *
FILE *out*,
char spectext[MAXSTRNG],

imptext[MA4XSTRNG],
cctext[MAXSTRENG];

import $Type;
import $Class;
enter module $Node;

method
obj $Node
NodeBuildDisplay(aNode)
obj $Node aNode;

out = fopen("ddb.out", "a");
P~ convert object code to C code *

AM-stringToC(aNode .name ,opname~sizeof(opname)):,
fprintf(out,"1%s\n" ,opname);
AM-stringToC(aNode.speclfication, spectext, sizeof(spectezt));
fprintf (out,"%s\n", spectext);

/* determine if optional property has a value '
P* before executing an operation on it. ~

if (hasvalue(aNode.implementation))

AM_stringToC(aNode.implementation, imptext. sizeof(imptext));
fprintf(out, "%s\n", imptext);

If (hasvalue(aNode .controlconstralnts))
I
AMf_stringToC(aNode.controlconstralnts, cotext, sizeof(cctext));
fprintf(out. "%/s\n!", cctext);

fclose(out);
return(aNode);

37

This example helps to show the ability to interweave the

standard C language with COP. Object code and variables are

prefaced by the "$" symbol. This is used to distinguish object

variables from standard C variables.

The declarative statements "import" and "enter module" are

used for name visibility. Making a name visible provides the COP

compiler with a reference to what the name defines. Database names

are defined in the Vbase Kernel Database and in TDL code. Names

defined in the Vbase Kernel Database are globally defined in a default

set. Names not included in the default set must be made visible

explicitly using the "import" and "enter module" statements. An

"import" declaration imports the definitions of a set of database names

so they are visible within the current COP compilation unit. An "enter

module" declaration establishes visibility for all names defined in a

module. [Ref. 17:p. VII-3

The functions "hasvalue" and "AM.stringToC" are system

supplied. The function "hasvalue" is used to test whether an optional

property has a value before executing any operations on it. This is

necessary because of the strong-typing of Vbase. The function

"AM_stringToC" Is used to convert from an object string to a standard

C string for use by systems external to the Vbase database.

38

Two other operations defined where "NodeListSubNodes" and

"NodeListSubNodeslnternal". These operations are used to assist in

the traversal of the tree structure. The COP code to implement these

operations is shown below:

method
obj $Setlobj $Node]
NodeListSubNodes(aNode)
obj $Node aNode;

obj $Set[obj $Node] theSubNodes;
theSubNodes = $Set[obj $Nodel$D;
$Node$ListSubNodeslnternal(aNode, theSubNodes);
return(theSubNodes);

method
obj $Set[obj $Node]
Node~istSubNodeslnt(aNode, theSubNodes)
obj $Node aNode;
obj $Set[obj $Node] theSubNodes:,

obj $Node currentNode;
iterate(currentNode = aNode.SubNodes)

Set[nsert(theSubNodes, currentNode);
$Node$ListSubNodeslnternal(currentNode, theSubNodes);

rcturn(theSubNodes);

This code helps to demonstrate other powerful capabilities of Vbase.

One is the ability of one method to invoke another method. This, is

shown in the method "NodeListSubNodes". The other capability~is the

system supplied iterator operation. This operation is used to control

aggregate types. The system defined Iterator can be modified to return

39

the aggregate in any order the user decides.

The remaining operations and methods are listed in Appendix

C. The above was shown to demonstrate the feasibility and power of

Vbase.

3. Application Programs

The final step in a Vbase design is to develop C or COP user

applications. The user applications developed correspond to the

functional specifications and architectural design. The user

applications developed in response to the functional specifications are:

* CreateRootNode. Used to create a Node which is the root of a tree.

" CreateChildNode. Used to create a Node which is a child of a
Node.

• GetParent. Used to retrieve the name of a Node's parent Node.

" GetChildren. Used to retrieve the name(s) of a Node's child
Node(s).

* DeleteNode. Used to delete a Node and it's children from the tree.

" TraverseTree. Used to traverse the entire tree structure to generate
the PSDL program.

The user applications developed in response to the architectural design

are:

• StoreProperty. Used to update, insert, or change the value of a
Node's property.

" GetProperty. Used to retrieve the contents of a Node's property.

40

The applications were all implemented using COP. They are

shown in Appendix D. The actual code for some of these applications

is quite long, therefore the code for TraverseTree will be shown here for

demonstration purposes. This application takes as input the name of

the root Node of a tree. It then iterates through the entire tree writing

the properties of a Node to the output file "ddb.out".

#include <stdio.h> /* include standard C routines */
#include <string.h>
#define LINELENGTH 80
#define MAXLINE 81 /* maximum linelength is 81 characters */
FILE *in, *out; /* local variable declarations *I
char rootname[MAXLINE],

tempname[MAXLINE];
import $Node;
main(argc, argv)
int argc;
char **argv;

/* local object variables */
char *dbname:
char *getenvo;
obj $Node theNode, currentNode;
obi $Set[obj $Node] theNodes;
obj $String theRoot;
if (argc > 1)

dbname = argv[1];}
else if (dbname = getenv("DBNAME"))

else

printf('Must specify database name, either as a command
line argument,\nor via, the Unix environment variable
DBNAME\n");
exit(l);

41

AMdatabaseOpen(dbname, 0);
in = fopenC'ddb.in", "r');
out = fopen("ddb.out", "w");
fclose(out);
fgets(tempname, LINELENGTH, in);
strncpy(rootname, tempname, (strlen(tempname) - 1));
theRoot = rootname;
theNode = $Node$Lookup(theRoot);

(void) $Node$BuildDisplay(theNode);

theNodes = $Node$1istSubnodes(theNode);
iterate(currentNode = theNodes)(
(void) $Node$BuildDisplay(currentNode);
}

protect
AM databaseClose(dbname);

The above code illustrates two additional keywords: "void" and

"protect". 'Void" is a standard C keyword, indicating that the method

does not return a value. The method simply outputs the information

passed to it.

"Protect" ensures execution of a statement when an exception is

raised. "Protect AMdatabaseClose(dbnarne)" ensures the database

involved is closed in the event an exception is raised.

4. Interface Requirements of the DDB and User Interface

The current implementation of the DDB is invoked

automatically by the User Interface. The design engineer is not

required to have any knowledge of the DDB. For example, whenever a

42

designer creates a new root Node, the User Interface will automatically

retain the needed information and invoke the "createRootNode"

application. The same is true for all the other operations of the DDB.

An excellent followup thesis to this one can concentrate on

implementing a graphical interface between the two systems to allow

manual and automatic operation invocation. The goal of the system

should be to make the underlying system transparent to the user.

Input and output between the DDB and User Interface is

accomplished through the use of two ffies titled "ddb.in" and "ddb.out".

The input format required for each application is described below and

is maintained by the User Interface.

(1) Create Root Node - used to create a root node.

Format required for ddb.in

* node name

* specification

* implementation (optional)

* control constraints (optional)

43

(2) Create Child Node - used to create a child node.

Format required for ddb.in

" node name

" parent node name

* specification

• implementation (optional)

" control constraints (optional)

(3) Store Property - used to store or change a node property.

Format required for ddb.in

" node name

" property

(4) Get Property - used to retrieve a node property.

Format required for ddb.in

* node name

" property name

output to ddb.out

o property

44

(5) Get Children - used to retrieve the names of a parent nodes

children.

Format required for ddb.in

* parent node name

output to ddb.out

* child node(s) names

(6) Get Parent - used to retrieve the name of a child nodes parent.

Format required for ddb.in

* child node name

output to standard output device

* parent node name

(7) Delete Node - used to delete a node and all of it's children.

Format required for ddb.in

* node name to delete

(8) Traverse Tree - used to traverse the entire tree and produce the

psdl program.

Format required for ddb.In

o root node name

output to ddb.Out

* entire psdl program

45

5. Version Control

The version control function has not been addressed to date.

The previous functions were implemented without concern for version

control. However, the issue of version control is an important one and

must be addressed in future implementations.

A pre-release article from Ontologic, Inc. describes a history

mechanism embedded into the Vbase Object Manager [Ref. 20:p. 1).

However, this feature has not been implemented in current releases.

A discussion of the key points raised in the article will be helpful to

further explain the issue of version control. Hopefully, future Vbase

releases will incorporate this feature.

There are two basic approaches to version control: linear and

non-linear evolution. Linear evolution is a series of states through

which an entity passes as it is mutated [Ref. 20:p. 11. A version is a

snapshot of the entity at a point in time. The whole set of versions,

called its Version-Set, represents the entire history of an entity [Ref.

20:p. 21. Figure 6 gives a graphical representation of the Version-Set.

V: lvl -->v2 -->v3 -->v4}

Figure 6. Version Set

Non-linear evolution is defined as a situation in which a version

has more than one successor or more than one predecessor version

[Ref. 2 0:p. 51. In order to correctly maintain these relationships, there

46

must be a method to describe the default path from a version. The

other required method is to describe alternatives to the default path.

The system must resolve a simple reference by default to the most

recent version in a linear evolution path, and to the default branch of

a forking evolution path, so simple references are unambiguous

[Ref. 2 0:p. 51.

There are two ways to make a new version: manually or

automatically. Manual version creation can be invoked by the user

whenever he thinks that a significant change has occurred. Automatic

version creation is invoked without the intervention of the user

[Ref. 20:p. 3]. This is controlled by the type of the entity via its

property and operations definitions.

In addition to the PSDL components of a Node, there must be

audit trail information stored in the Node for version control. The

current implementation of the DDB does not include audit trail

information. The recommended audit trail information to be used in

future implementations is given in Figure 7.

As previously stated, a system supplied version mechanism is

not implemented in current release versions. The set of tools required

to implement version control are within Vbase and could be

implemented by the designer. This would be another excellent

followup thesis to this one.

47

PROJECT NAME

RESPONSIBLE ENGINEER

WHEN CREATED

WHEN LAST UPDATED

VERSION NUMBER

CURRENT VERSION

Figure 7. Audit Trail Properties

48

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSIONS

The development of hard, real-time software systems continues to

be an expensive process for the DOD. The Computer-Aided

Prototyping System (CAPS) is one tool under development which will

help to decrease the costs of these systems. CAPS is an attempt to

integrate several of the prevailing software development methodologies

into one tool. With a central theme of rapid prototyping, CAPS shows

great promise for the future of software development in the DOD.

This thesis concentrated on the development of the Design

Database (DDB) for CAPS. It is a key element of the system as project

management has become an issue of increasing importance in software

development. A robust Design Database which can efficiently and

effectively, store and retrieve the Prototype System Description

Language (PSDL) program will significantly contribute to the overall

success of CAPS.

The goal of this thesis has been to develop a conceptual level

design and initial implementation of the Design Database for CAPS.

The basic design was developed using the object-oriented approach

and the initial implementation was accomplished with an object-

oriented DBMS (Vbase). Object-oriented technology offers several

49

enhancements to current DBMS technology, and with its maturity it

will become as important to CAD applications as relational database

technology has become to business applications. This study has

accomplished the goals of the thesis and identified key aspects of the

design Database for continued implementation and follow-up thesis

work.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

This thesis has provided a foundation for further implementation of

the Design Database. Further research and testing is required to

complete full implementation of the system and to identify potential

weaknesses. This author recommends work in the following specific

areas:

" The design and implementation of version control within the design
database. The issue of version control is an important one and
must become an integral part of the DDB if it is to become an
effective part of CAPS.

" The design and implementation of a graphical interface between the
User Interface and the remainder of CAPS. Without an effective
User Interface, CAPS will find little usefulness in the "real world".

" The study of memory management for the DDB as well as the
entire system. Each application in Vbase requires two megabytes
of memory. With the DDB and the SBMS both implemented in
Vbase, the memory requirements for these two systems alone will
be immense.

" The design and implementation of an efficient method for
constraint checking within the various levels of decomposition.
Currently, the User Interface is maintaining minimal information
for this purpose but a more elaborate system is required.

50

APPENDIX A

REUSABLE COMPONENTS LIBRARY

The model was formulated in terms of reusable components for

business applications. The reusable component library used is shown

below as taken from Ref. 19. Explanatory comments extend from the

leftmost "--" to the end of the line.
relation is a(obect,type)

-- Means the object is an instance of the type.
is -a(every objecta type)
-- Every object is an instance of some type.

relation akindof(type,type)
a_kindof(any type l,any type2) <=>(isa(any object,type 1) => is.a(obJect,type2))

-- akind oftypel,type2) means type1 is a subset of type2.

type object
a_kind_of(any type,object)
-- Any type Is a subset of the universal type "object".

type type
-- The set of all types.

is._a(an object lany object2) <=> is,.a(object2,type)
-- Any object with instances is a type and all types are non-empty.

type relation
-- The set of all relations.

-(is a(any object,type) & is...a(object,relation))
-- Types and relations do not overlap.

relation unque(type)
-- Means there is only one instance of the type.

unque(any type) <=>
is._a(any object 1,type) & is..a(any object2,type) -> equal(objectl,obect2)

type software system
-- The set of systems to be realized as programs.

relation proposed(software-system)
-- Means the software system is going to be developed.

51

relation controls(software_system,type)
-- Means the instances of the type are created, modified, and
-- destroyed only by means of the software system.

type agent
-- The cause of an activity, usually a person or organization.

type activity
-- The set of all processes and actions.

type user
a-kind-of(user,agent)
-- A class of users of a software-system.
uses(every user,a software-system)

relation uses(user, software.system)
-- Means the user depends on the software__system to achieve some
-- goals.

relation maintains(user,type)
-- Means the instances of the type are created, modified, or
-- destroyed upon request from the user.

maintains(any user,any type) & controls(any softwaresystem,type) =>
uses(user,software-system)

type supplier
a-kindof(supplier,agent)
supplies(every supplier,an object)

type vendor
akindoflvendor, supplier)
sells(every vendor,a product)

type customer
a~kind-of(customer,agent)
buys(every customer,a product)

relation buys(customer,object)
-- Means the customer buys instances of the object.

buys(any customer,any object) -> buysfrom(customer,object,a vendor)

relation buys from(customer,objectvendor)
-- Means the customer buys the object from the vendor.

buys-from(any customer,any object,any vendor) ->
pays(customer,vendor)

52

relation pays(customer,vendor)
-- Means the customer sends money to the vendor.

relation supplies(supplier,object)
-- Means the supplier creates and delivers instances of the object.

relation sells(vendor,object)
-- Means the vendor sells instances of the object.

sells(any vendor,any object) -> supplies(vendorobject)
-- To sell something, a vendor must supply it.

sells(any vendor,any object) => buys(a customer,object)
-- To sell something, someone must buy It.

relation needed for(object,activity)
-- Means an instance of the object is needed for the activity to occur.

relation wants(agent,object)
-- Means the agent is motivated to acquire the object.

wants(any agent,any activity) & neededfor(any object,activity) =>
wants(agent,object)
-- People want the means to achieve their ends.

wants(any customer,any object) => buys(customer,object)
-- Customers are agents with the resources to satisfy their wishes.

53

APPENDIX B

MODEL LANGUAGE GRAMMAR

The grammar for the Model language used in the requirements

analysis is shown below as taken from Ref. 19. Terminal symbols

appear in double quotes. Repetitions are indicated by x* (zero or more

x's) or x+ (one or more x's). Alternatives are separated by vertical

bars. Ranges of single character alternatives are shown [0-21

(meaning "0" I "" I "2").

model = (type I relation)*

type = "type" name law* attribute*
relation = "relation" name "("namejst")" law*
attribute = name "("namejlist")" ":" name
law = relationship I "-" law I law op law I "(" law ")"

relationship = name "(" arglist")"
op ="&" I "I" I "=>" I "<=>"

namelist = name ("," name)*
arg-list = arg ("" arg)*
arg = variable I attributevalue
variable = prefix name digit* dependency
attributevalue = arg "." name dependency
prefix = "a" I "an" I "every" I "any" I '"'
dependency = "("arg-list")" I pier

name = alpha+ ("2 alpha+)*
alpha = [a-z] I IA-Z
digit = [0-91

All ops are left associative: a op b op c means (a op b) op c.
Precedence order: (strongest) -, &, 1, =>, <=> (weakest).
Comments extend from the leftmost "--" to the end of the line.

54

APPENDIX C

TDL DEFINITION EXAMPLES

The TDL definitions have all been successfully compiled and tested.

Testing consisted of actual operation of the Design Database using an

example prototype. The tests were conducted by invoking each

application or operation with the correct format in the input file

"ddb.in". All exception definitions were tested by intentionally invoking

each operation.

Node definition

define Type Node

supertypes = [Entity);

properties =

name: String;
specification: String;
implementation: optional String;
controlconstraints: optional String;
graphicrecord: optional String;
subNodes: distributed Set[Node] inverse $Node$isChildOf;
isChildOf: optional Node inverse $Node$subNodes;
I;

operations =

bufildDisplay (n:Node)
returns(Node)
method (NodeBuildDisplay);

listSubnodes (n: Node)
returns (Set[Node])
method (NodeListSubNodes);

listSubnodeslntemal (n:Node,s:Set[Node])
returns (Set[Nodel)
method (NodeListSubNodeslnt);

55

refines delete (n: Node)
raises (CannotDelete)
triggers(NodeDeleteTrigger);

I;

define Procedure Create

(t:Type,

keywords
name: String,
specification: String,
optional implementation: String,
optional controlconstraints: String,
optional graphicrecord: String,
optional isChfldOf: Node,
optional where: Entity,
optional hownear: Clustering)

returns (Node)
raises (NodeAlreadyExists)

triggers (NodeCreateTrigger)

supertypes = ($Entity$Create};
end Create;

define Procedure Lookup (s:String)
returns (Node)
raises (NodeNotInCatalog)
method (NodeLookup)
supertypes = {Entity};

end Lookup;

end Node;

define UnorderedDictionary NodeCatalog
memberspec = Node;
indexSpec = String;

end NodeCatalog;

define Variable NodeCatalogVar: UnorderedDictionary[Node, String :-

NodeCatalog;

define variable NodeSerialNumber: Integer :- 1;

56

Exception definitions

define ExceptionType NodeException

supertypes = Exception);
properties=

nodeName: String;

end NodeException;

define Exceptionlype NodeNotlnCatalog

supertypes = (NodeException);
end NodeNotlnCatalog;

define ExceptionType NodeAlreadyExlsts

supertypes = (NodeException);

end NodeAlreadyExlsts;

57

APPENDIX D

COP OPERATIONS CODE

The COP definitions have all been successfully compiled and

tested. Testing consisted of actual operation of the Design Database

using an example prototype. The tests were conducted by invoking

each operation with the correct format in the input file "ddb.in". All

exception definitions were tested by intentionally invoking each

operation.

String Definitions

/* This file contains all the symbolic constant definitions used /
/* in the COP operation and application programs */

#define LINELENGTH 80 /* Linelength is 80 characters */
#define MAXLINE 81 /* Maximum linelength is 81 characters /

/* including the null (\0) character */
#define LINEBUFFER 82 /* Temporary buffer used to hold Maxline /
#define MAXSTRING 4000 /* Maximum length of a String in Vbase */

Node Methods

/* Program - Node.c /
/* This program implements the methods defined in Node.tdl /
/* The methods implemented are *
/* Node Build Display
/* Node List SubNodes
/* Node List SubNodes Internal /
/* Node Lookup
/* Node Create Trigger
/* Node Delete Trigger *

#include <stdio.h> /* include standard C routines /
#include <string.h>
#include "string.def' /* include string definitions fie /
char opname[MAXLINE]; /* Local variable declarations */
FILE *out;
char spectext[MAXSTRING],

imptext[MAXSTRING],
cctext[MAXSTRING];

58

import $TIype;

import $Class;

enter module $Node;

method
obj $Node
NodeBuildDisplay(aNode)

obj $Node aNode;

out = fopen("ddb.out", "a");

/* Convert Object Code to C Code/
AM_strlngToC(aNode.narne,opname,sizeof~opname));
fprintf(out,"%s\n",opname);
AM~strlngToC aNode. specification, spectext,sizeof(spectext));
fprintf (out,"%s\n", spectext);

if (hasvalue(aNode. implementation))

AM_strlngToC(aNode. implementation, imptext, slzeotlimptext));
fprintflout, "%s\n", imptext);

if (hasvalue(aNode. controlconstraints))

AM_strlngToC(aNode.controlconstralnts, cctext, sizeof(cctext));
fprlntf(out, "%s\n", cctext);

fclose (out);
return(aNode);

method
obj $Setlobj $Node]
NodeLlstSubNodes(aNode)
obj $Node aNode;

obj $Setlobj $Node] theSubNodes;
theSubNodes = $Setlobj $Node]$[);
$Node$LlstSubNodeslnternal(aNode, theSubNodes);
retum(theSubNodes);

59

method
obj $Set[obj $Node]
NodeLlstSubNodeslnt(aNode, theSubNodes)
obJ $Node aNode;
obj $Setlobj $Node] theSubNodes;

obJ $Node currentNode;
iterate(cur-rentNode = aNode.SubNodes)

SetInsert(theSubNodes, currentNode);
$Node$LlstSubNodeslnternal(currentNode, theSubNodes);

return(theSubNodes);

method
obj $Node
NodeLookup(aNodeName)
obj $String aNodeName;

obj $Node theNode;
theNode=
$UnorderedDlctionary$GetElement($NodeCatalogVar,aNodeName);
except(enf: ElementNotFound)

raise NodeNotlnCatalogfnodeName: aNodeName);

return(theNode);

method
obj $Node
NodeCreateThigger(aType, name, specification, implementation,

controlconstraints, graphicrecord,
lsChild~f, where, hownear)

obj $Type aType;
keyword obJ $String name;
keyword obj $String specification;
keyword obj $String implementation;
keyword obj $String controlconstraints;
keyword obj $String graphicrecord;
keyword obj $Node isChild~f;
keyword obj $Entity where;
keyword obj $Clustering hownear;

60

obj $Node theNode;

theNode = $Node$Lookup(name);
raise NodeAlreadyEists(nodename:name);

except (znce: NodeNotInCatalog)

theNode = $$(aIype, namemname, specification:specffication,
implementationimplementation,
controlconstraints:controlconstraints,
graphicrecord:graphicrecord,
isChlld~f~isChild~f,
where:where, hownear:hownear);

$UnorderedDictionary$Insert($NodeCatalogVar~nane,theNode);
return(theNode);

method
void
NodeDeleteThigger(aNode)

obj $Node aNode;

obj $Node theNode;
iterate(theNode = aNode.subNodes)
$UnorderedDlctionary$Remove($NodeCatalogVar, theNode. name);

$$(aNode);

61

APPENDIX E

APPLICATION PROGRAMS

The application programs have all been successfully compiled and

tested. Testing consisted of actual operation of the Design Database

using an example prototype. The tests were conducted by invoking

each application or operation with the correct format in the input file

"ddb.in". All exception definitions were tested by intentionally invoking

each operation.

Create Root Node

/* Program CreateRootNode *
/* This program is used to create a Node which will be the root of /
/* a tree structure. It interfaces with the User Interface through 1
/* a file called ddb.in.
/* The program reads in the required information from ddb.in */
/* then creates the Node and inserts it as the root node
/* The required information in ddb.ln is */
/* Node Name
/* Specification */
/* Implementation (Optional) */
/* Control Constraints (Optional)

#include <stdio.h> /* include Standard C routines /
#include <string.h>
#include "string.def' /* include string definitions fie /
/* Local variable declarations /
char tempname[MAXLINE],

opname[MAXLINE],
templine[MAXLINE],
tempgr[MAXLINE];

char Temptext[LINEBUFFER],
Graphtext [LINEBUFFERJ;

char Spectext[MAXSTRING],
Imptext[MAXSTRING],
Cctext[MAXSTRING],
Grlink[MAXSTRING];

62

FILE *in, *gr;
Ant llnelength;
Ant i;
import $Node;

main (argc, argv)
Ant argc;
char **argv;

char *dbname;
char *getenvO;
obj $Node theNode; /* local object variables '
obj $String thename,

thespec,
theimp,
thecc,
thegraph;

if (argc > 1)

dbname = argv[1J;

else if (dbname = getenv("DBNAME"))

else

printf("Must specify database name, either as a command line
argument,\nor via the Unix environment variable DBNAME\n");
exlt(1);

AM databaseOpen (dbname, 0);
in ;fopen("ddb.ln", "r");
fgets(tempname, IJINELENGTH, in); /0 Read the name of the Node1
stmncpy(opname, tempname. (strlen(tempname) - 1));
fgets(templlne, LINELENGTH, in); /0 Read first property .
if (strncmp("SPECIFICATION", templine, 13) -- 0)
/* Verify Specification is first Property/

strncpy(Spectext,templine, strlen(templlne));
strcat(Spectext, 'An");
templine[Ol = \;
for(l = 0; 1 < MAXLINE; i++)

Temptext[iJ = \'
fgets(templlne, LINELENGTH, An);

63

whlle(strncmp(IMPLEMENTATION",templine, 14) 1- 0)
/* Read in Specification Until Implementation Begins/

strncpy(Temptext, templlne,strlen(templine));
strcat(Temptext, 'An");
strcat(Spectext, Temptext);
templlne[01 = \;
for(i . 0; 1 < MAXLINE; i++)

Temptextil = \'
fgets(templlne, LINELENGTH-, in);

Cctext[O] = \'
Grlink[0J = \;
strncpy(Temptext, templine, strlen(templine));
strcat(Temptext, "\n");
strcat(Imptext, Temptext);
templine[Ol = \;

for(i =0; 1 <MAAXUINE; i++)
Temptext[t] = \;

fgets(templine, LINELENGTH, in);

/* If Implementation is graph then read in graphic record *

if (strncmp("GRAPH", tempine, 5) == 0)

gr = fopenV'llnks.c", "r");
fgets(tempgr, LINELENGTH, gr);
while (feof(gr) == 0)

strncpy(Graphtext, tempgr, strlen(tempgr));
strcat(Graphtext, 'An");
strcat(Grlink,Graphtext);
tempgr[O] = \;
for (i = 0; 1 < MAXLINE; i++-i)

Graphtextlll =A0
fgets(tempgr, ILINELENGTI-, gr);

fclose(gr);
strnepy(Temptext, templine, strlen(templne));
strcat(Temptext, 'An");
strcat(Imptext, Temptext);
templine[Ol -=\'
for 0I = 0; 1 < MAXLINE; 14+)

Temptextil = A,

64

while (feoflin) == 0)

fgets(templlne, LINELENOTH, in);
if~strncmp(CCONTROL CONSTRAINTS". templlne, 19) -0)

/* Read in Control ConstraintsI

whileffeotfin) == 0)

strncpy(Temptext, tempine, strlen(templlne));
strcat(Temptext, "\n");
strcat(Cctext, Temptext);
templineO] = \;
for (i =0: i < MAXLINE; i++)

Temptextill = 90
fgets(templine, LINELENGTH, in);

else

/* Read in Implementation/

stmncpy(Temptext, tempine, strlen(templne));
strcat(Temptext, 'An"),
strcat(Imptext, Temptext);
templine0l = 10
for (1 = 0; 1 < MAXLINE; 1++)

Temptexti ='\,
fgets(templine, LINELENGTH, in);

else

printfl"Input Mfe is not in the correct format.");
exit(1);

fclose(in);
/* Assign C variables to Object Variables/
thename = opname;
thespec =Spectext;

theimp Imptext;
/* Execute Create depending on the properties .
if ((strlen(Cctext) == 0) && (strlen(Grllnk) -- 0))

theNode - $Node$lname:thename,specification:thespec,
tmplementation:thelimpj;

except(nae: NodeAlreadyEilsts)

65

theNode = $Node$Lookup(thename);

else If ((strlen(Cctext) = 0) && (strlen(Grlnk) 1- 0))

thegraph = Grlink;
theNode = $Node$[name:thename, specification:thespec,

implementation:theimp, graphicrecord: thegraph;
except(nae:NodeAlreadyExists)

theNode = $Node$Lookup(thename);

else

thecc = Cctext;
theNode = $Node$[name:thename, specification: thespec,

implementation:theimp, controlconstraints:thecc;
except(nae:NodeAlreadyExists)

theNode = $Node$Lookup(thename);

protect
AMdatabaseClose(dbname);

Create Child Node

/" Program Create Child Node /
/* This program is used to create a Node which will a child of /
/* a node in the tree structure. It interfaces with the User /
/0 Interface through a fie called ddb.in.
/* The program reads in the required information from ddb.in
/* then creates the Node and inserts in the proper order
/* The required information in ddbn is '/
/0 Node Name */
/* Parent Node Name 8/

/* Specification 8/
/0 Implementation (Optional)
/* Control Constraints (Optional)

66

#include <stdlo.h> /* include standard C routines/
#include <string.h>
#include "string.def' /* include string definitions Mie/
/* local variables */
char tempname[MAXLINEI,

opname[MAXLINE],
templine[MIAXLJNEJ,
tempgrMAXLINE];

char tempparent[MAXLINEI,
parentname[MAXLlNEl,

char TemptextIiNEBUFFERJ,
Graphtext[LINEBUFFERJ;

char Spectext[MAXSTRINGJ,
Imptext[MAXSTRING],
Cctext[MAXSTRNGJ,
Grllnk[MAXSTRINGJ;

FILE *in, *gr;
int linelength;
int i;
import $Node;
main (argc, argv)

int argc;
char **argv;

char *dbname;
char *getenvo,

obj $Node theNode,
parentNode; /* local object Variables/

obj $String thename,
thespec,

theimp,
thecc,
thegraph,
theparent;

if (argc > 1)

dbname = argv[1J;

else if (dbriame = getenv("DBNAME"))

67

else

prlntf("Must specify database name, either as a command line
argument, \nor via the Unix environent variable DBNAME\nl);

exlt(1);

AM -databaseOpen (dbname, 0);
in = fopen('ddb.ln", "r"):
fgets(tempname, LINELENGTH, in); /* Read the name of the Node/
strncpy(opname, tempname, (strlen(tempname) - 1)):
fgets(tempparent, LINELENGTH, in), /* Read the parent Node name/

strncpy(parentname, tempparent, (strlen(tempparent) - 1));
fgets(templine, LINELENGT-, in); /* Read in the property/
/* Verify Specification is first Property */
if (strncmp("SPECIFICATION", templine, 13) -= 0)

strncpy(Spectext~templine, strlen(templne));
strcat(Spectext, 'An");
templine[Ol ='\;
for(i = 0, 1 < MAXLINE; i++)

Temptextil) = A'
fgets(templlne, LINELENGTH, in);

while(strncmp(IMPLEMENTATIQN" ,templine, 14) != 0)
/* Read in Specification Until Implementation Begins/

strncpy(Temptext, templine ,strlen(templine));
strcat(Temptext, 'An");
strcat(Spectext, Temptext);
templine[O] ='\;
for(i = 0; 1 < MAXLINE; i++)

Temptextil = \'
fgets(templine, LINELENGTH, in);

Cctext[O] = A'
Grlink[0l = \;
strncpy(Temptext, tempine, strlen(templne));
strcat(Temptext, 'An");
strcat(Imptext, Temptext);
templine[0I = \;
for(i = 0; 1 <MNAXLINE; t++)

Temptextil = \;

68

I, If Implementation is graph then read in graphic record
fgets(templine. LINELENGTH, in);
if (strncmp("GRAPH", templine, 5) == 0)

gr = fopen("links.c", 11ri);
fgets(tempgr, LINELENGTH, gr);
while (feoflgr) -- 0)

strncpy(Graphtext, tempgr. strlen(tempgr)),
strcat(Graphtext, "\n");
strcat(Grlink, Graphtext);
tempgr[OI = \;
for (I - 0; 1 < MAXUINE; 1++.)

Graphtextlil =9\'
fgets(tempgr, LINELENGTH, gr);

Hcose (gr);
strncpy(Temptext, templine, strlen(templine));
strcat(Temptext, 'An");
strcat(Irnptext, Temptext);
templineOl ='\;
for (i = 0; 1 < MAXUINE; i++)

Temptext[i] A0

while (feoffin) ==0)

fgets(templine, LINELENGTH, in);
if~strncmp("CONTROL CONSTRAINTS", templine, 19) ==0)

/* Read in Control Constraints/

while(feof~in) == 0)

strncpy(Temptext, templine, strlen(templine));
strcat(Temptext, 'An");
templine[ol = \;
for (1 =0; 1 < MAXLINE; i++)

Temptextill = \;
fgets(templine, LINELENGTH, in);

else

strncpy(Temptext, templine, strlen(templne));
strcat(Temptext, 'An");
strcat(Imptext, Temptext);
templine[ol = \'

69

for (1 = 0; 1 < MAXLINE; I++)
Temptext[iJ = \1

else

printfl"Input fie is not in the correct formnat.");
exit(1);

fclose(in);
/* Assign C variables to Object Variables *
theparent = parentname;
thenanie = opname;
thespec =Spectext;

theimp =Imptext;

parentNode = $Node$Lookup(theparent);.
/* Execute Create depending on the properties
if ((strlen(Cctext) -m 0) && (strlen(Grlink) == 0))

theNode = $Node$[nanie:thename,speclfication:thespec,
implementation:theixnp, isChild~f~parentNodel;

except(nae:NodeAlreadyExists)

theNode = $Node$Lookup(thename);

else if((strlen(Cctext) == 0) && (strlen(Grlink) I= 0))

thegraph =Grlink;

theNode =$Node$[name:thename, speciflcation:thespec,
implementation:theimnp, graphlcrecord:thegraph,
isChfld~f~parentNodel;

except(nae: NodeAlreadyExists)

theNode = $Node$Lookup(thename);

else

thecc - Cctext;
theNode = $Node$Iname:thenaine, specificatlon:thespec,

implementation:theimp, controlconstraints:thecc,
isChild~f~parentNodeJ;

except(nae:NodeAireadyE.,dsts)

70

theNode = $Node$Lookup(thename);

protect
AM_databaseClose(dbname);

Store Property

/* Program Store Property *
/* This program is used to store or change a Node property. */
/* It interfaces with the User Interface through a fie called
/* ddb.in.
/* The program reads in the required information from ddb.in
/* then inserts the new property into the Node
/* The required information in ddbAn is */
/* Node Name
/* Property Name */

#include <stdio.h> /* include standard C routines
#include <string.h>
#include "string.def' /* include string definitions file
/* local variables */
char opname[MAXLINE],

tempname[MAXLINE],
templine[MAXLINE];

char nodeproperty[MAXSTRING];
char temptext[LINEBUFFER];
FILE *in;
int i;
import $Node;

main(argc, argv)

int argc;
char **argv;

char *dbname;
char *getenvO;
obJ $Node theNode; /* local object variables/
obJ $String theOperator,

theProperty;

71

if (argc > 1)

dbname = argv[1I;

else if (dbnanie = getenvC'DBNAME"))

else

Iprlnttl"'Must specify database name, either as a command line
argument, \nor via the Unix environment variable command");

e~dt(1);

AM -databaseOpen (dbname, 0);
in = fopen("ddb.ln","r)
fgets(tempname, LINELENGTH, in); /* Read in the Node name/
strncpy(opname, tempname, (strlen(tempnanie) - 1));
fgets(templine, LINELENGTH, in); /* Read in the property name
do

strncpy(temptext, templine, (strlen(templine) - 1));
strcat(temptext, "\n");
strcat(nodeproperty, temptext);
templine[01 = 'O-
for(l = 0; 1 < MAXLINE; i++)

temptextil A'
fgets(templine, LINELENGTH, in);

whileffeoffin) == 0);
/* Assign c variables to object variables/
theOperator =opname;

theProperty =nodeproperty;

/* Verify the Node exists */
theNode = $Node$Lookup(theOperator);
/* Assign the property to its correct property/
if (strncmp("SPECIFICATION", nodeproperty, 13) mm0)

theNode. specification = theProperty;

else if (strncmp("IMPLEMENTATION", nodeproperty, 14) 0m)

theNode.implementation - theProperty;

else if (strncmp("CONTROL CONSTRAINTS", nodeproperty, 19) m0)

72

theNode.controlconstraints = theProperty;

else
I

theNode.graphicrecord = theProperty;

fclose(in);

protect
AMdatabaseClose(dbname);

Get Property

/* Program Get Property /
/* This program is used to retrieve a Node property.
/* It interfaces with the User Interface through two files /
/* ddb.in & ddb.out */
/* The program reads in the required information from ddb.in */
/* then outputs the requested information to ddb.out */
/* The required information in ddb.in is */
/* Node Name
/* Property Name
/* The information output to ddb.out
/* Property requested

#include <stdio.h> /* include standard C routines /
#include <string.h>
#include "string.def' /* include string definitions file /
/* local variables */
char opname[MAXLINE],

tempnameMAXLINE],
templine[MAXLINE];

char nodeproperty[MAXSTRING];
char temptext[LINEBUFFER;

FILE *in, *out;

int i;

import $Node;

main(argc, argv)

int argc;

73

char **argv;

char *dbname;
char *getenvo;
obj $Node theNode; /* local object variables
obj $String theOperator,

theProperty;

if (argc > 1)

dbnarne = argv[1];

else if (dbname = getenv('DBNAME"))

else

printfl"Must specify database name, either as a command line
argument, \nor via the unix environment variable command");
elit(1):

AM -databaseOpen (dbname, 0);
in = fopen("ddb.in", 'r");
out = fopen("ddb.out", 'W");
fgets(tempname, LINELENGTH, in); /* read in Node name/
strncpy(opname, tempname, (strlen(tempname) - 1));
fgets(templlne, LINELENGTH, in); /* read in property name ~
/* Assign C variable to object variable *
theOperator = opname;

/* Verify Node exidsts */
theNode = $Node$Lookup(theOperator);
/* Determine correct property to output ~
if (strncmp("SPECIFICATJON", templine, 13) -= 0)

/* Assign property ~
theProperty = theNode. specification;
/* Convert object type to C type */
AM-stringToC(theProperty, nodeproperty. sizeofinodeproperty));
/* Output to ddb.out */
fprintflout, "%s\n", nodeproperty):

74

else if (strncmp("IMPLEMENTATION". templine, 14) == 0)

P* Assign property *
theProperty = theNode. implementation;
/* Convert object type to C type */
AM-stringroC(theProperty, nodeproperty, sizeof~nodeproperty));
/P Output to ddb.out */
fprintf(out, "%s\n", nodeproperty);

else if (strncmp("CONTROL CONSTRAINTS", templine, 19) -= 0)

P* Assign property
theProperty = theNode.controlconstraints;
P* Convert object type to C type */
AM4-stringroC(theProperty, nodeproperty, sizeof~nodeproperty));
/* Output to ddb.out */
fprintf(out, "%s\n", nodeproperty);

else

P* Assign property /
theProperty = theNode.graphicrecord;
P* Convert object type to C type */
AM-stringToC(theProperty, nodeproperty, sizeofinodeproperty));
/* Output to ddb.out */
fprintflout, "%s\n", nodeproperty);

felose (in);
fclose(out);

protect
AM-databaseClose(dbname);

Get Parent

/* Program Get Parent/
/* This program is used to retrieve the name of a Node's parent '
/* It interfaces with the User Interface through ddb.in .
1* & the standard output device
/* The program reads in the required information from ddb.in ~
/* then pipes the requested information to the standard output *
/* The required information in ddb.in is/
P* Child Node Name
/* The information output to standard output/
/* Parent Node Name

75

#include <stdio.h> /* include standard c routines /
#include <string.h>
#include "string.def' /* include string definitions file ./
/* local variables /
FILE *in;
char parentname[MAXLINE],

tempname[MAXLINE],
childname[MAXLINE];

import $Node;

main(argc, argv)

int argc;
char **argv;

char *dbname;
char *getenvO;
obj $Node theNode,

parentNode; /* local object variables /
obj $String theChild,

theParent;

if (argc > 1)

dbname = argv[1i;
I

else if (dbname = getenv("DBNAME"))

else
I

printf("Must specify database name, either as a command line
argument,\nor via the Unix environment variable DBNAME\n");

exit(1);

AMdatabaseOpen(dbname, 0);
in = fopen("ddb.in", "r");
fgets(tempname,LINELENGTH, in); /* read in Child Node Name /
strncpy(childname, tempname, (strlen(tempname) - 1));
/* Assign c variable to object variable /
theChild = childname;
/* Verify Node exists */
theNode = $Node$Lookup(theChld;

76

/* Assign Parent Name */
parentNode = theNode.isChfldOf;
/* Convert to c code */
AMstringToC(parentNode. name, parentname, sizeof(parentname));
/* Output to standard output device */
printf('%s\n", parentname);
fclose(in);

protect
AMdatabaseClose(dbname);

Get Children

/* Program Get Children */
/* This program is used to retrieve the name of a Node's
/* Child or Children. It interfaces with the User Interface /
/* through ddb.in & ddb.out */
/* The program reads in the required information from ddb.in */
/* then outputs the requested information to ddb.out
/* The required information in ddb.in is /
/* Parent Node Name
/* The information output to ddb.out /
/* Child Node Name(s) *

#include <stdio.h> /* include standard c routines *
#include <string.h>
#include "string.def' /* include string definitions file */

/* local variables */

FILE *in, *out;
char opname[MAXLINE],

tempname[MAXLINE],
childname[MAXLINE];

import $Node;

main(argc, argv)

int argc;
char **argv;

char *dbname;
char *getenvO; /* local object variables /
obj $Node theNode,

currentNode;

77

obj $SetlobJ $Node] theNodes;
obj $String theParent,

if (argc > 1)

dbname = argvlll;

else if (dbname =getenv('DBNAME"))

else

prlntf("Must specifyr database name, either as a command line
argument,\nor via the Unix environment variable DBNAME\n");

eit(1);

AM -databaseOpen(dbnarne, 0);
in = fopen("ddb.in", "r");
out = fopen("ddb.out", "w");

fgets(tempname,LINELENGTH, in); /* read in parent node name
stmncpy(opname, tempname, (strlen(tempname) - 1));
/* assign to object variable/
theParent = opname;
1* verify node ex-dsts ~
theNode = $Node$Lookup(theParent);
/* assign children names to variable/
theNodes = theNode.subNodes;
/* iterate through the set */
Iterate(currentNode = theNodes)

/* Convert object code to C code/
AM strlngToC(currentNode.name, childname, slzeof(childnane)),
/* Output to ddb-out */
fprintf(out, "%s\n", childname);

fcose(in);
fclose(out),

protect
AM-databaseClose(dbname);

78

Delete Node

/* Program Delete Node /
/* This program is used to delete a Node from the tree
/* It also deletes any child Nodes coming from the Node */
/* It interfaces with the User Interface through ddb.in
/* The program reads in the required information from ddb.in "/
/* then deletes the node and all of its' children
/* The required information in ddb.in is *1
/* Node Name

#include <stdio.h> /* include standard C routines */
#include <string.h>
#include "string.def' /* include string definitions fie *1
/* Local variables */
char opname[MAXLINE],

tempname [MAXLINE];
FILE *in;
import $Node;

main(argc, argv)
int argc;
char **argv;

char *dbname;
char *getenvo;
obJ $Node theNode; /° local object variables */
obj $String theOperator;

if (argc > 1)
I

dbname = argv[ll;

else if (dbname = getenv("DBNAME"))

else
I

printf("Must specify database name, either as a command line
argument, \nor via the unix environment variable command");

exit(I);

AM databaseOpen (dbname, 0);
in = fopen("ddb.in", "r");
fgets(tempname, LINELENGTH, in); /* read in the node name */

79

strncpy(opname, tempname, (strlen(tempname) - 1));
/* assign to object variable /
theOperator = opname;
/* verify node exists */
theNode = $Node$Lookup(theOperator);
/* delete the node by calling the delete operation ./
$Node$Delete(theNode);
fclose(in);

protect
AM databaseClose(dbname);

Traverse Tree

/* Program Traverse Tree */
/* This program is used to traverse the entire tree &
/* produce the PSDL program.
/* It interfaces with the User Interface through ddb.in
/* & ddb.out.
/* The program reads in the required information in ddb.in /
/* then traverses the entire tree outputting the contents */
/* of all nodes to ddb.out
/* The required information in ddb.in is */
/* Root Node Name
/* The information outputted to ddb.out /
/* for each Node in the tree
/* Node Name
/* Specification
/* Implementation (Optional) */
/* Control constraints (Optional) */

#include <stdio.h> /* include standard C routines */
#include <string.h> -
#include "string.def' /* include string definitions file */
/* local variables */
FILE *in, *out;
char rootname[MAXLINE],

tempname[MAXLINE];

import $Node;

main(argc, argv)
int argc;
char **argv;

80

char *dbname;
char *getenvfl;
/* local object variables/
obj $Node theNode, currentNode;
obj $Set~obJ $Node] theNodes;
obj $String theRoot;

if (argc > 1)

dbname - argvl ;

else if (dbname = getenv("DBNAME"))

else

prlntfC'Must specify database name, either as a command line
argument,\nor via the Unix environment variable DBNAME\n");

eidt(l);

AM-databaseOpen(dbname, 0);
in = fopen("ddb.in", Yr);
/* erase the contents of ddb.out ~
out = fopen('ddb.out", 'tw");
fclose (out);
fgets(tempname, LINELENGTH, in); /* read in root node name ~
strncpy(rootname, tempname, (strlen(tempname) -1));

/* assign to object variable/
theRoot = rootname;
/* verify Node e~dsts ~
theNode = $Node$Lookup(theRoot);
/* outp ut root node contents */
(void) $Node$BuildDisplay(theNode);
/* Assign children of root to variable/
theNodes = $Node$IistSubnodes(theNode);
/* iterate through all the children ~
iterate(currentNode = theNodes)

/* output the children node contents/
(void) $Node$BuildDisplay(currentNode);

protect
AM-databaseClose(dbname);

81

Makefile

The makefile is not a part of the Design Database but is included

to assist interested parties in the compilation and execution of the

DDB. Due to current system memory requirements, the author does

not anticipate leaving a compiled and working copy of the DDB at the

Naval Postgraduate School. As stated in Chapter V, each application

in Vbase requires two megabytes of memory. T1is fact requires that

the author remove applications once compiled and tested. Therefore,

the uncompiled programs will remain on the "Suns2" system. The

following provides the steps to compile and execute the DDB.

" Obtain a fresh copy of the Vbase Kernel Database.
" Change directories to the "tdl" directory.
" Type "tdl -v *.tdl" to compile the tdl definitions.
" Change directories to the "methods" directory.
" Type "make applicationprogram_name".

Application-program-name is the name of the application program
to compile, i.e. createRootNode. This command will compile the
COP operations code as well as the application program. Type this
command until all applications programs are compiled.

" Type "application program name" to invoke the application.

The make file for the Design Database is as follows.

CEFLAGS= -g
CLFLAGS =
CFLAGS = $(CEFLAGS) $(CLFLAGS)

.c.o:; cop -c $(CFLAGS) $*.c

LIBRARY = -Ivbase -Im -ll
SOURCES = Node.c

OBJECTS = $(SOURCES:.c=.o)

82

traverseTree: $(OBJECTS) traverseTree. o
cop $(CFLAGS) -o traverseTree
$(OBJECTS) traverseTree.o -Ivbase -Im -11

createRootNode: $(OBJECTS) createRootNode.o
cop $(CFLAGS) -o createRootNode \
$(OBJECTS) createRootNode-o -lvbase -im -HI

createChildNode: $(OBJECTS) createChildNode.o
cop $(CFLAGS) -o createChildNode \
$(OBJECTS) createChildNode.o -Ivbase -lim -1I

storeProperty: $(OBJECTS) storeProperty.o
cop $(CFLAGS) -o storeProperty \
$(OBJECTS) storeProperty.o -lvbase -im -HI

getProperty: $(OBJECTS) getProperty. o
cop $(CFLAGS) -o getProperty
$(OBlJECTS) getProperty-o -lvbase -im -HI

getParent: $(OBJECTS) getParent-o
cop $(CFLAGS) -o getParent \
$(OBJECTS) getParent.o -lvbase -im -HI

getChildren: $(OBJECTS) getChlldren~o
cop $(CFLAGS) -o getChildren \
$(OBJECTS) getChildren-o -lvbase -im -HI

deleteNode: $(OBJECTS) deleteNode.o
cop $(CFLAGS) -o deleteNode \
$(ODJECTS) deleteNode.o -lvbase -im -HI

CLEAN:
nn -f *. a.out core traverseTree createRootNode\
createChildNode storeProperty getProperty
getParent getChildren deleteNode

83

LIST OF REFERENCES

1. Luqi and Ketabchi, M., A Computer Aided Prototyping System,
Tech. Rep. NPS 52-87-011, Naval Postgraduate School, Monterey,
CA, 1987 and in IEEE Software, pp. 66-72, March 1988.

2. Boehm, B.W., "Improving Software Productivity," IEEE Computer,
pp.43-57, September 1988.

3. Booch, G., Software Engineering with Ada, Benjamin Cummings
Publishing Co., Inc., Menlo Park, CA, 1983.

4. Chitwood, G., "Ada Meets the Challenge of Real-Time Simulation,"
Defense Computing, v. 1, no. 4, pp.32-38, July/August 1988.

5. Nielsen, K., and Shumate, K., Designing Large Real-Time Systems
With Ada, Intertext Publications/Multiscience Press, Inc., New
York, NY, 1988.

6. Galik, D., A Conceptual Design of a Software Base Management
System for the Computer Aided Prototyping System, Master's thesis,
Naval Postgraduate School, Monterey, CA, December 1988.

7. Raum, H., Design and Implementation of an Expert User Interface
for the Computer Aided Prototyping System, Master's thesis, Naval
Postgraduate School, Monterey, CA, December 1988.

8. Altizer, C., Implementation of a Language Translator for the
Computer Aided Prototyping System Master's thesis, Naval
Postgraduate School, Monterey, CA, December 1988.

9. Thorstenson, R., A Graphical Editor for the Computer Aided
Prototyping System, Master's thesis, Naval Postgraduate School,
Monterey, CA, December 1988.

10. Wood, M., Run-Time Support for Rapid Prototyping, Master's thesis,
Naval Postgraduate School, Monterey, CA, December 1988.

11. Porter, S., Design of a Syntax Directed Editor for PSDL, Masters
thesis, Naval Postgraduate School, Monterey, CA, December 1988.

12. Marlowe, L., A Scheduler for Critical Time Constraints, Masters
thesis, Naval Postgraduate School, Monterey, CA, December 1988.

84

13. Ketabchi, M., 'The Object-Oriented Model," Proceedings of the
1986 Fall Joint Computer Conference, Computer Society Press of
the IEEE, Washington, D.C., 1987.

14. McKenna, J., 'Teaching OOP," OPSLA '88 Conference
Proceedings, The Association for Computing Machinery, New York,
NY, 1988.

15. Ketabchi, M., and Berzins, V., "Modeling and Managing CAD
Databases," IEEE Computer, pp.46-49, February 1987.

16. Ketabchi, M., Object Oriented Database Management Systems for
Complex Data and Process Intensive Applications (Course Notes),
September 1988.

17. Vbase Integrated Object Database User's Manual, Ontologic Inc.,
Billerica, MA, 1987.

18. Berzins, V., and Luqi, An Introduction to the Specification
Language SPEC, Tech. Rep. NPS 52-88-031, Naval Postgraduate
School, Monterey, CA, 1988.

19. Berzins, V., Software System Design (Course Notes), 1988.

20. Landis, G., "Maintaining Design Evolution and History Information
in an Object-Oriented CAD/CAM Database", Ontologic, Inc., 1987.

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5000

3. Office of Naval Research 1
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command 1
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office 1
OUSDRE(R&AT)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command 1
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 20363-5100

7. Office of the Secretary of Defense 1
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense 1
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer 1
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

86

10. Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-5000

11. National Science Foundation
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation
Division of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation
Director, PYI Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211
Attn. Mr. J. Smith
800 N. Quincy Street
Arlington, Virginia 22217-5000

16. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ITSO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

17. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ITSO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

18. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ITSO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

87

19. Defense Advanced Research Projects Agency (DARPA)
Director Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

20. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

21. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

22. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

23. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

24. LTCOL Kirk Lewis, USA
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

25. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5700

26. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

88

27. Professor Valdis Berzins
Code 52BE
Naval Postgraduate School
Computer Science Department
Monterey, California 93943-5000

28. LT Bryant S. Douglas
1217 N. Clay
Springfield, Missouri 65802

89

